
ENG3165 – Numerical Methods coursework – 2017/18 
This coursework is worth 50% of the ENG3165 Numerical Methods & CFD module 

Instructions – IMPORTANT: please read carefully 
The coursework involves solving two engineering problems by applying numerical methods for partial 

differential equations and Matlab programming. Coding is only a minor part of the assessment (please see the 

marking scheme for each problem). That means that it is more important to answer the questions correctly by 

using a Matlab code that works, rather than producing the best possible computer programme. 

Some parts of the coursework won’t depend on Matlab programming, but on mathematical derivations and 

written explanations and comments. Matlab must only be used where specified to obtain numerical answers 

or plots. 

Several questions will require using data values that are different depending on you URN, and in particular, the 

last two digits. Make sure you use the right values from your URN. Double check them before submitting. If 

you fail to use the correct URN values, I’m afraid I cannot help. 

Any evidence of plagiarism or collusion with others will be dealt with severely under the University rules. 

Please ensure that what you submit is your work and only your work; do not “assist” or seek assistance from 

others by e.g. “sharing” parts of programmes, and do not under any circumstances copy code from 

books/websites. Both the coursework paper and the code will be submitted to specialist plagiarism-detection 

software to spot potential problems. 

As part of this coursework you will be required to write and submit several Matlab codes. As the University has 

a site licence for Matlab, if you do not already have a copy, or have access to a copy, you should be able to get 

one for personal University use. To obtain this go to https://www.surrey.ac.uk/fepsit/services/ and follow 

instructions. Please contact IT services if you have a problem: I am afraid I cannot help with this. 

The coursework paper must be submitted as an electronic document (either a Word document, .docx or .doc, 

an OpenOffice/LibreOffice document, .odt or a PDF file .pdf). Mathematical formulas can be entered using the 

Word built-in “Equation” tool (or OpenOffice/LibreOffice equivalent) or by digitalising (picture or scan) a hand-

written paper and including it into the main .docx/.doc/.odt/.pdf file. The former method is recommended and 

preferred. Please submit only one document containing the whole coursework paper. If you submit multiple 

documents I will only assess the latest submission unless otherwise specified. 

You must submit all your Matlab codes as m-files. Do not copy them onto the main document. A single script 

per problem that will run all the smaller scripts and functions for me when I’m assessing your code would be 

preferable but not mandatory. If your numerical answers and plots are not supported by the code you’ve 

submitted, then they won’t be considered correct. You can submit multiple files on SurreyLearn, even at 

different points in time. 

Submit your coursework paper and Matlab codes (m-files) to your “Numerical Methods Coursework” 

assignment folder on SurreyLearn. The deadline is Tuesday 9th January 2018 at 16:00. Do allow plenty of 

time for submission, as the process will likely take a while: do not try to submit at the very last minute. The 

time of submission of the last file is the one that will be considered for the whole coursework for late 

submission purposes. Please submit all the individual files separately, do not compress them in a single .zip 

file. 

  

https://www.surrey.ac.uk/fepsit/services/


Data for use in coursework 
 

Please include the following info at the beginning of you coursework document: 

 

Name: 

Surname: 

URN: 

 

Last two digits from the URN: 

6 x x x x x x 

     aURN bURN 

 

aURN = 

bURN =  

 

 

Declaration of originality 

(see document in SurreyLearn)  



Problem 1 [50 marks] 
 

We consider the problem of optimising the cross section of a channel of rectangular shape. The cross 

section, shown in Figure 1, is assumed to have a perimeter 𝑙 = 𝑏 + 2ℎ, which is directly proportional 

to the amount of material required. Therefore, the shape can be described in terms of two 

parameters/inputs, the size of the base in the rectangle 𝑏, and the height of the cross section ℎ. 

 

Figure 1: Rectangular cross section 

We are interested in the flowrate 𝑄 defined as the integral of the velocity 𝑢 (normal to the cross 

section) over the cross section Φ 

 𝑄 = ∫ 𝑢 𝑑𝑥 𝑑𝑦
Φ

 (1) 

The channel is at a slope of angle 𝛼, as shown in Figure 2, and the horizontal components of the 

gravitational force creates the pressure gradient for the downwards flow. The governing equations 

are the Navier-Stokes equations, 

 𝒖 ⋅ ∇𝒖 + ∇𝑝 = 𝒇 + 𝜈∇2𝒖 (2) 

Note 1: the above Navier-Stokes equation is written in vector notation. We will develop the full equations component-by-
component in 2D below. 
Note 2: don’t be scared by the Navier-Stokes equation above. We won’t solve that, but instead will simplify the equation 
further as you will see below 
 

 

Figure 2: Flow channel 

 



With the assumption of fully developed flow, these can be reduced to Poisson’s equation for the 

velocity component 𝑢 normal to the channel cross section, 

 −∇2𝑢 =
𝑔 sin 𝛼

𝜈
 (3) 

Here, 𝑔 is the gravitational constant, and 𝜈 is the kinematic viscosity of the fluid. For simplicity, we 

assume that 

 
𝑔 sin 𝛼

𝜈
= 1 (4) 

Along the walls of the channel the velocity is zero, and on the free surface a zero-stress condition 

(
𝜕𝑢

𝜕𝑛
= 0) is assumed. 

We will solve Poisson’s equation using a finite difference procedure. Due to symmetry we only 

consider half the channel section, as shown in Figure 3. The following boundary conditions are 

applied to the original domain: 

 {
𝜕𝑢

𝜕𝑛
= 0 𝑖𝑛 𝐴𝐵 𝑎𝑛𝑑 𝐴𝐷

𝑢 = 0 𝑖𝑛 𝐵𝐶 𝑎𝑛𝑑 𝐶𝐷

 (5) 

Note 3: the above normal derivative will, of course, be 
𝜕𝑢

𝜕𝑥
 along AB, and 

𝜕𝑢

𝜕𝑦
 along AD. 

 

We want to solve the problem in the rectangular half-domain Ω, using the finite difference method. 

We use a rectangular grid with 𝑁 × 𝑁 points in the computational domain, giving rectangular cells of 

size Δ𝑥 =
𝑏

2(𝑁−1)
 and Δ𝑦 =

ℎ

𝑁−1
. 

 

Figure 3: Geometrical representation of the computational domain 

Equations (3) and (4) can be written in component notation as 

 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
= −1 (6) 

 



Questions for Problem 1 

 

1) Using the Taylor series expansion, show that the central difference method for the second 

derivative is second-order accurate. 

[8 marks] 

 

2) Use a second-order central difference method to derive the finite difference schemes for the 

discretisation of all derivative terms for equation (6) in the interior of the domain. Use a simpler 

first-order scheme for the Neumann boundary points. You do not have to derive special 

schemes for the corner points, use the left boundary scheme at corner A, and 𝑢 = 0 at the 

other three corners. 

[10 marks] 

 

3) Write a Matlab programme to solve the above problem. Then, using your code, calculate the 

solution 𝑢(𝑥, 𝑦) using a grid size 𝑁 = 41, for 𝑙 = 3.0 +
𝑎𝑈𝑅𝑁

20
 and 𝑏 = 1.0 −

𝑏𝑈𝑅𝑁

50
, where 𝑎𝑈𝑅𝑁 

and 𝑏𝑈𝑅𝑁 are the last two digits from your URN. Plot the solution (contour plot). 

[12 marks] 

 

4) Write a Matlab programme to calculate the flow rate from the final 𝑢(𝑥, 𝑦) values resulting 

from question 3. If you have not solved question 3, you can still answer this question by using a 

random-value 𝑢(𝑥, 𝑦) matrix with the correct number of rows and column, instead of the actual 

solution from question 3. In order to calculate the flow rate using equation (1) you will need to 

apply a numerical integration scheme as explained in the box below. 

[5 marks] 

Numerical integration schemes were introduced in Year 2 Numerical Methods. Even if you don’t 
recall them, you should be able to follow the procedure below that will allow you to calculate the 
double integral in equation (1). We are going to use the simplest numerical integration scheme, that 
is the trapezoidal rule. Assuming we have a matrix with values 𝑢(𝑥𝑖 , 𝑦𝑗), with 𝑖 = 1, . . , 𝑁 and 𝑗 =

1, . . , 𝑁, you can calculate a single integral along x for each 𝑦𝑗  value as follows: 

 

𝐼(𝑦𝑗) = ∫ 𝑢(𝑥, 𝑦𝑗)𝑑𝑥 ≅
𝑥

Δ𝑥

2
[𝑢(𝑥1, 𝑦𝑗) + 2 ∑ 𝑢(𝑥𝑖 , 𝑦𝑗)

𝑁−1

𝑖=2

+ 𝑢(𝑥𝑁 , 𝑦𝑗)] 

 
Once you have calculated the above integral for all 𝑦𝑗  values, you can then calculate the double 

integral in equation (1) using the same technique: 

𝑄 = ∫ 𝑢 𝑑𝑥 𝑑𝑦
Φ

= ∫ 𝐼(𝑦)𝑑𝑦
𝑦

≅
Δ𝑦

2
[𝐼(𝑦1) + 2 ∑ 𝐼(𝑦𝑗)

𝑁−1

𝑗=2

+ 𝐼(𝑦𝑁)] 

 
Hint: remember that you are only computing half of your physical domain. In order to obtain the 
actual flow rate over the whole section, you’ll have to adjust your results accordingly. 
 

 



5) Write a Matlab programme to calculate the convergence rate for the 𝐿2 norm of the solution. 

Use the grid sizes 𝑁 = 11, 21, 41, 81. Since we don’t know the exact solution, use the solution 

for 𝑁 = 81 as a reference. To calculate the 𝐿2 norm, only use the reference grid points that 

correspond to the coarsest grid. This will avoid interpolation problems, keeping the complexity 

of your code at a minimum. Comment on your results. If you have not solved questions (3) 

and/or (4), you can still comment on what is your expected convergence rate of this numerical 

scheme, from theoretical considerations, to get at least partial marks. 

[10 marks] 

Error-free, clean, well commented and well indented Matlab code will get you additional 5 marks. 

An efficient, vectorised code with sensible and justified use of user-defined functions can get you a 

bonus of up to 5 marks (provided that the total marks for Problem 1 do not exceed 50). 

[5 (+5) Marks] 

 

Important: in order for me to assess whether your answers are supported by your Matlab code 

when required, please write down detailed instructions on how to run your code to obtain the 

above answers. 

  



Problem 2 [50 marks] 
 

In lectures and tutorials we have studied diffusion problems in 1D and 2D in depth. In this problem 

we’ll be looking at some more interesting physics: a model represented by reaction-diffusion 

equations. It is a system that has the physics of diffusion but also has some kind of reaction that 

adds different behaviours to the solution. In particular we are going to look at the Gray-Scott model, 

which simulates the interaction of two generic chemical species reacting and, of course, diffusing. 

Some amazing patterns can emerge with simple reaction models, eerily reminiscent of patterns 

formed in nature. See for example the following video by Karl Sims on YouTube; it almost looks like a 

growing coral reef… 

https://youtu.be/8dTmUr5qKvI  

 

The Gray-Scott model represents the reaction and diffusion of two generic chemical species, 𝑈 and 

𝑉, whose concentration at a point in space is represented by variables 𝑢 and 𝑣. The model follows 

some simple rules: 

• each chemical diffuses through space at its own rate; 

• species 𝑈 is added at a constant feed rate into the system; 

• two units of species 𝑉 can “turn” a unit of species 𝑈 into 𝑉: 2𝑉 + 𝑈 →  3𝑉; 

• there is a constant kill rate removing species 𝑉. 

This model results in the following system of partial differential equations for the concentrations 

𝑢(𝑥, 𝑦, 𝑡) and 𝑣(𝑥, 𝑦, 𝑡) of both chemical species: 

 

𝜕𝑢

𝜕𝑡
= 𝐷𝑢∇2𝑢 − 𝑢𝑣2 + 𝐹(1 − 𝑢) 

𝜕𝑣

𝜕𝑡
= 𝐷𝑣∇2𝑣 + 𝑢𝑣2 − (𝐹 + 𝑘)𝑣 

 

(7) 

You should see some familiar terms, and some unfamiliar ones. On the left-hand side of each 

equation, we have the time rate of change of the concentrations. The first term on the right of each 

equation corresponds to the spatial diffusion of each concentration, with 𝐷𝑢  and 𝐷𝑣  the respective 

rates of diffusion. In case you forgot from Problem 1, the ∇2 operator is the Laplacian: 

 ∇2𝑢 =
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 (8) 

The second term on the right-hand side of each equation corresponds to the reaction. You see that 

this term decreases 𝑢 while it increases 𝑣 by the same amount: 𝑢𝑣2. The reaction requires one unit 

of 𝑈 and two units of 𝑉, resulting in a reaction rate proportional to the concentration 𝑢 and to the 

square of the concentration 𝑣. This result derives from the law of mass action. We assume here a 

reaction rate constant equal to 1, which just means that the model is non-dimensionalised in some 

way. 

https://youtu.be/8dTmUr5qKvI


The final terms in the two equations (7) are the “feed” and “kill” rates, respectively: 𝐹(1 − 𝑢) 

replenishes the species 𝑈 (which would otherwise run out, as it is being turned into 𝑉 by the 

reaction); −(𝐹 + 𝑘)𝑣 is diminishing the species 𝑉 (otherwise the concentration 𝑣 would simply 

increase without bound). 

The values of 𝐹 and 𝑘 are given parameters that can be modified, together with the diffusion 

constants, to see what happens in the system. 

The system will be represented by two matrices, u and v, holding the discrete values of the 

concentrations 𝑢 and 𝑣, respectively. In order to initialise the u and v variables correctly you’ll need 

to download the uvinitial.mat file from the “Numerical Methods > Coursework” folder on 

SurreyLearn and save it into your working Matlab folder. In order to start from the same initial 

values you’ll need to load these data into your code in the initialisation section of your Matlab 

programme by adding the following statement: 

 

load('uvinitial.mat') 
 

 

The above statement will add two variables, u and v, to your workspace with the correct initial 

values. You can subsequently use those two variables in your code without the need of initialising 

them. In order for the above Matlab statement to work, the uvinitial.mat file must be in the 

current working Matlab folder, i.e. the one where you are running your code from. The initial data 

look like the ones in Figure 4. 

 

Figure 4: Representation (contour plot) of the initial u (left) and v (right) values 

If you’re curious about how the above initial conditions were built, here is a short description. We 

started by setting u = 1 everywhere and v = 0 everywhere, then introduce areas of difference 

(10 x 10-element patches) as initial conditions. We then added a little noise to the whole system to 

help the 𝑢 and 𝑣 reactions along. A short Matlab code was used for this purpose (see below): 



 

% generate initial conditions for Problem 2 in ENG3165 coursework 2017-18 
% 
num_patches = 30; n = 192; 
rand_x = randi(n,[1,num_patches]); 
rand_y = randi(n,[1,num_patches]); 
u = ones(n); 
v = zeros(n); 

  
r = 10; 

  
for k = 1:length(rand_x) 
    i = rand_x(k); 
    j = rand_y(k); 
    i_min = max(i-r,1); i_max = min(i+r,n); 
    j_min = max(j-r,1); j_max = min(j+r,n); 
    u(i_min:i_max,j_min:j_max) = 0.50; 
    v(i_min:i_max,j_min:j_max) = 0.25; 
end 

  
u = u + 0.05 * rand(n); 
v = v + 0.05 * rand(n); 

  
save('uvinitial.mat', 'u', 'v') 

 
 

NOTE: DO NOT USE THIS CODE IN YOUR COURSEWORK. We are showing it here to help you 
understand how the system is constructed. However, you must use the data we've supplied above as 
your starting condition. 

 

 

Questions for Problem 2 

 

1) Consider the simpler 1D diffusion equation (not the more complex reaction-diffusion equations 

set up above): 

 
𝜕𝑢

𝜕𝑡
= 𝜈

𝜕2𝑢

𝜕𝑥2
 (9) 

where 𝜈 is the viscosity. Determine whether equation (9) is elliptic, parabolic or hyperbolic. 

Show your reasoning and calculations. 

 [5 marks] 

 

2) Discretise the reaction-diffusion equations (7) in both the interior of the domain and the 

boundaries. Use a forward-time, central-space (FTCS) scheme for the interior points. Use zero 

Neumann boundary conditions on all sides of the domain and discretise using a first order 

special scheme; at the corners, use the zero Neumann boundary condition along x (in other 

terms: consider the corner as part of either the left or the right boundaries, not the bottom or 

top ones). 

[15 marks] 



 

3) Write a Matlab programme to solve the above problem. In particular, calculate the solutions 

𝑢(𝑥, 𝑦, 𝑡) and v(𝑥, 𝑦, 𝑡) using the following assumptions: 

• Δ𝑥 = Δ𝑦 = 𝛿 

• For your time step (in seconds), set 

Δ𝑡 =
9

40

𝛿2

max(𝐷𝑢 , 𝐷𝑣)
  

• Grid of points with dimension 𝑁 × 𝑁 points, where 𝑁 = 192 

• Domain is 5 m x 5 m 

• Final time (in seconds) is 8000 − [(𝑎𝑈𝑅𝑁 + 1) ∗ 𝑏𝑈𝑅𝑁] 

• 𝐷𝑢 = 0.00016; 𝐷𝑣 = 0.00008 

• 𝐹 = 0.035; 𝑘 = 0.065 

Plot the final solution for both chemical species, using the contourf function (look it up in the 

Matlab help). [Matlab tip: for a better visualisation of the results, you may want to remove the 

contour lines – by adding the option (..., ‘LineColor’, ’none’) to the contourf() 

function – and use at least 20 contour levels] 

 [15 marks] 

 

4) Write a Matlab programme to calculate the evolution in time of the average concentration of 

the two species over the whole domain: 

𝑢̅(𝑡) =
1

𝑁2 ∑ ∑ 𝑢(𝑥𝑖 , 𝑦𝑗 , 𝑡)

𝑁

𝑗=1

𝑁

𝑖=1

 

𝑣̅(𝑡) =
1

𝑁2 ∑ ∑ 𝑣(𝑥𝑖 , 𝑦𝑗 , 𝑡)

𝑁

𝑗=1

𝑁

𝑖=1

 

Plot 𝑢̅(𝑡) and 𝑣̅(𝑡) vs. time on the same graph. 

[10 marks] 

Error-free, clean, well commented and well indented Matlab code will get you additional 5 marks. 

An efficient, vectorised code with sensible and justified use of user-defined functions can get you a 

bonus of up to 5 marks (provided that the total marks for Problem 2 do not exceed 50). 

[5 (+5) Marks] 

 

Important: in order for me to assess whether your answers are supported by your Matlab code 

when required, please write down detailed instructions on how to run your code to obtain the 

above answers. 

 

 



Once you have completed the coursework, you might want to explore a few more of the interesting 

patterns that can be obtained with the Gray-Scott model. The conditions below will result in a 

variety of patterns and should work without any other changes to your existing code. 

 

𝑫𝒖  𝑫𝒗  𝑭  𝒌  Description 

0.00016 0.00008 0.035 0.065 Bacteria 1 

0.00014 0.00006 0.035 0.065 Bacteria 2 

0.00016 0.00008 0.060 0.062 Coral 

0.00019 0.00005 0.060 0.062 Fingerprint 

0.00016 0.00008 0.020 0.055 Unstable 

0.00016 0.00008 0.050 0.065 Worms 1 

0.00016 0.00008 0.054 0.063 Worms 2 

0.00016 0.00008 0.035 0.060 Zebrafish 

 

References: 

http://www.karlsims.com/rd.html  

http://science.sciencemag.org/content/261/5118/189  

http://www.aliensaint.com/uo/java/rd/  

 

 

 

 

 

 

 

 

 

 

 

 

 

M. Carpentieri          30/10/2017 

http://www.karlsims.com/rd.html
http://science.sciencemag.org/content/261/5118/189
http://www.aliensaint.com/uo/java/rd/
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